SCHUR-CONVEXITY OF THE GENERALIZED HERONIAN MEANS INVOLVING TWO POSITIVE NUMBERS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur Power Convexity of the Daróczy Means

In this paper, the Schur convexity is generalized to Schur f -convexity, which contains the Schur geometrical convexity, harmonic convexity and so on. When f : R+ →R is defined by f (x) = (xm−1)/m if m = 0 and f (x) = lnx if m = 0 , the necessary and sufficient conditions for f -convexity (is called Schur m -power convexity) of Daróczy means are given, which improve, generalize and unify Shi et...

متن کامل

Schur-convexity and Schur-geometrically concavity of Gini means

The monotonicity and the Schur-convexity with parameters (s, t) in R2 for fixed (x, y) and the Schur-convexity and the Schur-geometrically convexity with variables (x, y) in R++ for fixed (s, t) of Gini mean G(r, s;x, y) are discussed. Some new inequalities are obtained.

متن کامل

On Generalized Schur Numbers

Let L(t) represent the equation x1 + x2 + · · · + xt−1 = xt. For k > 1, 0 6 i 6 k − 1, and ti > 3, the generalized Schur number S(k; t0, t1, . . . , tk−1) is the least positive integer m such that for every k-colouring of {1, 2, . . . ,m}, there exists an i ∈ {0, 1, . . . , k − 1} such that there exists a solution to L(ti) that is monochromatic in colour i. In this paper, we report twenty-six p...

متن کامل

Off-diagonal Generalized Schur Numbers

We determine all values of the 2-colored off-diagonal generalized Schur numbers (also called Issai numbers), an extension of the generalized Schur numbers. These numbers, denoted S(k, l), are the minimal integers such that any red and blue coloring of the integers from 1 to S(k, l) must admit either a solution to ∑k−1 i=1 xi = xk consisting of only red integers, or a solution to ∑l−1 i=1 xi = x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2011

ISSN: 1027-5487

DOI: 10.11650/twjm/1500406493